Reading Data Example

library(tidyverse)
data1 <- read_csv("/home/inqs/Repos/M408_S23/files/data/data_3_1.csv")
Rows: 1000 Columns: 10── Column specification ────────────────────────────────────────────────────
Delimiter: ","
chr (3): ID1, cat1, cat2
dbl (7): var1, var2, var3, var4, var5, var6, var7
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data2 <- read_csv("/home/inqs/Repos/M408_S23/files/data/data_3_2.csv")
Rows: 1000 Columns: 5── Column specification ────────────────────────────────────────────────────
Delimiter: ","
chr (3): ID1, ID_1, ID_2
dbl (2): va1, va2
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Example

Load data data_3_1.csv and data_3_2.csv.

data1
NA

Example

Load the following data: https://m408.inqs.info/files/data/data_3_3.csv

Example

Merge data sets data_3_1.csv and data_3_2.csv using the full_join()

Example

Using the penguins dataset from palmerpenguins, create a new variable that is the ln of flipper_length_mm.

Example

Using the penguins dataset from palmerpenguins, only select the variables that are continuous data points.

Example

Using the penguins dataset from palmerpenguins, filter the data set to look at penguins that are a Gentoo species.

Example

Using the penguins dataset from palmerpenguins, create a new variable that dichotomizes a penguin if their bill is longer than the average bill_length_mm.

Example

Using the penguins dataset from palmerpenguins, group by species and find the average ln flipper_length_mm

LS0tCnRpdGxlOiAiQ2xhc3MgOSIKYXV0aG9yOiAiSXNhYWMgUXVpbnRhbmlsbGEgU2FsaW5hcyIKZGF0ZTogImByIGZvcm1hdChTeXMudGltZSgpLCclbS0lZC0lWScpYCIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZm9sZGluZzogaGlkZQotLS0KCiMjIFJlYWRpbmcgRGF0YSBFeGFtcGxlCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmRhdGExIDwtIHJlYWRfY3N2KCIvaG9tZS9pbnFzL1JlcG9zL000MDhfUzIzL2ZpbGVzL2RhdGEvZGF0YV8zXzEuY3N2IikKZGF0YTIgPC0gcmVhZF9jc3YoIi9ob21lL2lucXMvUmVwb3MvTTQwOF9TMjMvZmlsZXMvZGF0YS9kYXRhXzNfMi5jc3YiKQpgYGAKCiMjIEV4YW1wbGUKCkxvYWQgZGF0YSBgZGF0YV8zXzEuY3N2YCBhbmQgYGRhdGFfM18yLmNzdmAuCgpgYGB7cn0KZGF0YTEKZGF0YTIKYGBgCgojIyBFeGFtcGxlCgpMb2FkIHRoZSBmb2xsb3dpbmcgZGF0YTogPGh0dHBzOi8vbTQwOC5pbnFzLmluZm8vZmlsZXMvZGF0YS9kYXRhXzNfMy5jc3Y+CgpgYGB7cn0KCmBgYAoKIyMgRXhhbXBsZQoKTWVyZ2UgZGF0YSBzZXRzIGBkYXRhXzNfMS5jc3ZgIGFuZCBgZGF0YV8zXzIuY3N2YCB1c2luZyB0aGUgYGZ1bGxfam9pbigpYAoKYGBge3J9CgpgYGAKCiMjIEV4YW1wbGUKClVzaW5nIHRoZSBgcGVuZ3VpbnNgIGRhdGFzZXQgZnJvbSBgcGFsbWVycGVuZ3VpbnNgLCBjcmVhdGUgYSBuZXcgdmFyaWFibGUgdGhhdCBpcyB0aGUgbG4gb2YgYGZsaXBwZXJfbGVuZ3RoX21tYC4KCmBgYHtyfQoKYGBgCgojIyBFeGFtcGxlCgpVc2luZyB0aGUgYHBlbmd1aW5zYCBkYXRhc2V0IGZyb20gYHBhbG1lcnBlbmd1aW5zYCwgb25seSBzZWxlY3QgdGhlIHZhcmlhYmxlcyB0aGF0IGFyZSBjb250aW51b3VzIGRhdGEgcG9pbnRzLgoKYGBge3J9CgpgYGAKCiMjIEV4YW1wbGUKClVzaW5nIHRoZSBgcGVuZ3VpbnNgIGRhdGFzZXQgZnJvbSBgcGFsbWVycGVuZ3VpbnNgLCBmaWx0ZXIgdGhlIGRhdGEgc2V0IHRvIGxvb2sgYXQgcGVuZ3VpbnMgdGhhdCBhcmUgYSBHZW50b28gc3BlY2llcy4KCmBgYHtyfQoKYGBgCgojIyBFeGFtcGxlCgpVc2luZyB0aGUgYHBlbmd1aW5zYCBkYXRhc2V0IGZyb20gYHBhbG1lcnBlbmd1aW5zYCwgY3JlYXRlIGEgbmV3IHZhcmlhYmxlIHRoYXQgZGljaG90b21pemVzIGEgcGVuZ3VpbiBpZiB0aGVpciBiaWxsIGlzIGxvbmdlciB0aGFuIHRoZSBhdmVyYWdlIGBiaWxsX2xlbmd0aF9tbWAuCgpgYGB7cn0KCmBgYAoKIyMgRXhhbXBsZQoKVXNpbmcgdGhlIGBwZW5ndWluc2AgZGF0YXNldCBmcm9tIGBwYWxtZXJwZW5ndWluc2AsIGdyb3VwIGJ5IHNwZWNpZXMgYW5kIGZpbmQgdGhlIGF2ZXJhZ2UgbG4gYGZsaXBwZXJfbGVuZ3RoX21tYAoKYGBge3J9CgpgYGAK